Skip to main content
Log in

Possibility of reducing the coordinated dinitrogen into ammonia and hydrazine using [Ru-L] (L = triamidoamine) and FLP-H\(_{2}\): A DFT study

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

DFT studies have been executed on a hypothetical Ru-triamidoamine complex to understand the possibility of synthesizing ammonia and hydrazine from the dinitrogen at normal temperature and pressure in heptane. In this present study, we utilized the \(\hbox {H}_{2}\) in the form of FLP-\(\hbox {H}_{2}\) complex and reacted with Ru-triamidoamine complex. We have added three \(\hbox {H}^{+}\) and \(\hbox {H}^{-}\) parts of FLP-\(\hbox {H}_{2}\) to the Ru complex in a stepwise manner as an alternate way to yield \(\hbox {NH}_{3}\)/\(\hbox {N}_{2}\hbox {H}_{4}\). The catalytic cycle for the formation of \(\hbox {NH}_{3}\) and \(\hbox {N}_{2}\hbox {H}_{4}\) were found to be energetically feasible. We have also observed some thermodynamically feasible six coordinate [M]-H intermediates.

Graphical Abstract

DFT studies were carried out on the possibility of synthesis of ammmonia and hydrazine from the dinitrogen using Ru-triamidoamine complex via FLP-\(\hbox {H}_{2}\) under normal experimental conditions. The calculated free energies revealed that the formation of all the intermediates and the transition states are thermodynamically viable. Furthermore, our calculations predicted that the formation of ammmonia is more feasible than hydrazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chatt J, Dilworth J R and Richards R L 1978 Recent advances in the chemistry of nitrogen fixation Chem. Rev. 78 589

    CAS  Google Scholar 

  2. Henderson R A, Leigh G J and Pickett C J 1983 The chemistry of nitrogen fixation and models for the reactions of nitrogenase Adv. Inorg. Chem. 27 197

    CAS  Google Scholar 

  3. Hidai M 1999 Chemical nitrogen fixation by molybdenum and tungsten complexes Coord. Chem. Rev. 185–186 99

    Google Scholar 

  4. Pickett C J and Talarmin J 1985 Electrosynthesis of ammonia Nature 317 652

    CAS  Google Scholar 

  5. Leigh G J 1992 Protonation of coordinated dinitrogen Acc. Chem. Res. 25 177

    Article  CAS  Google Scholar 

  6. Hidai M and Mizobe Y 1995 Recent advances in the chemistry of dinitrogen complexes Chem. Rev. 95 1115

    CAS  Google Scholar 

  7. Kozak C M and Mountford P 2004 Revelations in dinitrogen activation and functionalization by metal complexes Angew. Chem. Int. Ed. 43 1186

    Article  CAS  Google Scholar 

  8. Shilov A E 2003 Catalytic reduction of molecular nitrogen in solutions Russ. Chem. Bull. 52 2555

    Article  CAS  Google Scholar 

  9. MacKay B A and Fryzuk M D 2004 Dinitrogen coordination chemistry: on the biomimetic borderlands Chem. Rev. 104 385

    CAS  Google Scholar 

  10. Hinrichsen S, Broda H, Gradert C, Söncksen L and Tuczek F 2012 Recent developments in synthetic nitrogen fixation Annu. Rep. Prog. Chem., Sect. A Inorg. Chem. 108 17

    CAS  Google Scholar 

  11. Tanabe Y and Nishibayashi Y 2013 Developing more sustainable processes for ammonia synthesis Coord. Chem. Rev. 257 2551

    CAS  Google Scholar 

  12. Jia H-P and Quadrelli E A 2014 Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen Chem. Soc. Rev. 43 547

    Article  CAS  Google Scholar 

  13. Sivasankar C, Baskaran S, Tamizmani M and Ramakrishna K 2014 Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of \(\text{ N }_{2}\) to ammonia J. Organomet. Chem. 752 44

    Article  CAS  Google Scholar 

  14. Smil V 2001 In Enriching the Earth (Cambridge, MA: MIT Press)

    Google Scholar 

  15. Schlögl R 2003 Catalytic synthesis of ammonia—A ‘never-ending story’? Angew. Chem. Int. Ed. 42 2004

    Article  CAS  Google Scholar 

  16. Bielawa H, Hinrichsen O, Birkner A and Muhler M 2001 The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium Angew. Chem. Int. Ed. 40 1061

    Article  CAS  Google Scholar 

  17. Burgess B K and Lowe D J 1996 Mechanism of molybdenum nitrogenase Chem. Rev. 96 2983

    Article  CAS  PubMed  Google Scholar 

  18. Dos Santos P C, Igarashi R, Lee H-I, Hoffman B M, Seefeldt L C and Dean D R 2005 Substrate interactions with the nitrogenase active site Acc. Chem. Res. 38 208

    Article  CAS  Google Scholar 

  19. Burgess B K 1990 The iron-molybdenum cofactor of nitrogenase Chem. Rev. 90 1377

    CAS  Google Scholar 

  20. Howard J B and Rees D C 1996 Structural basis of biological nitrogen fixation Chem. Rev. 96 2965

    CAS  Google Scholar 

  21. Alien J D and Gawthorne J M 1986 Involvement of organic molybdenum compounds in the interaction between copper, molybdenum, and sulfur J. Inorg. Biochem. 27 95

    Article  Google Scholar 

  22. Eady R R 1996 Structure-function relationships of alternative nitrogenases Chem. Rev. 96 3013

    CAS  Google Scholar 

  23. Hardy R W F and Gibson A H 1979 In A Treatise on Dinitrogen Fixation (New York: Wiley-Interscience)

    Google Scholar 

  24. Nishibayashi Y, Iwai S and Hidai M1998 Bimetallic system for nitrogen fixation: Ruthenium-assisted protonation of coordinated \(\text{ N }_{2}\) on tungsten with \(\text{ H }_{2}\) Science 279 540

    Article  CAS  PubMed  Google Scholar 

  25. Fryzuk M D, Love J B, Rettig S J and Young V G 1997 Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes Science 275 1445

    Article  CAS  Google Scholar 

  26. Pool J A, Lobkovsky E and Chirik P J 2004 Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex Nature 427 527

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez M M, Bill E, Brennessel W W and Holland P L 2011 \(\text{ N }_{2}\) reduction and hydrogenation to ammonia by a molecular iron-potassium complex Science 334 780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yandulov D V and Schrock R R 2002 Reduction of dinitrogen to ammonia at a well-protected reaction site in a molybdenum triamidoamine complex J. Am. Chem. Soc. 124 6252

    Article  CAS  PubMed  Google Scholar 

  29. Yandulov D V and Schrock R R 2003 Catalytic reduction of dintrogen to ammonia at a single molybdenum center Science 301 76

    Article  CAS  PubMed  Google Scholar 

  30. Yandulov D V, Schrock R R, Rheingold A L, Ceccarelli C and Davis W M 2003 Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents Inorg. Chem. 42 796

    CAS  Google Scholar 

  31. Ritleng V, Yandulov D V, Weare W W, Schrock R R, Hock A S and Davis W M 2004 Molybdenum triamidoamine complexes that contain hexa-tert-butylterphenyl, hexamethylterphenyl, or p-bromohexaisopropylterphenyl substituents. an examination of some catalyst variations for the catalytic reduction of dinitrogen J. Am. Chem. Soc. 126 6150

    Article  CAS  PubMed  Google Scholar 

  32. Yandulov D V and Schrock R R 2005 Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes Inorg. Chem. 44 1103

    CAS  Google Scholar 

  33. Schrock R R 2005 Catalytic reduction of dinitrogen to ammonia at a single molybdenum center Acc. Chem. Res. 38 955

    Article  CAS  Google Scholar 

  34. Schrock R R 2005 Catalytic reduction of dinitrogen under mild conditions Chem. Comm. 2003 2389

    Google Scholar 

  35. Weare W W, Dai X, Byrnes M J, Chin J M, Schrock R R and Müller P 2006 Catalytic reduction of dinitrogen to ammonia at a single molybdenum center Proc. Natl. Acad. Sci. USA 103 17099

    Article  CAS  Google Scholar 

  36. Weare W W, Schrock R R, Hock A S and Müller P 2006 Synthesis of molybdenum complexes that contain ‘hybrid’ triamidoamine ligands, [(hexaisopropylterphenyl-\(\text{ NCH }_{2}\text{ CH }_{2})_{2}\text{ NCH }_{2}\text{ CH }_{2}\text{ N-aryl }]_{3}\)-, and studies relevant to catalytic reduction of dinitrogen Inorg. Chem. 45 9185

    CAS  Google Scholar 

  37. Schrock R R 2008 Catalytic reduction of dinitrogen to ammonia by molybdenum: Theory versus experiment Angew. Chem. Int. Ed. 47 5512

    Article  CAS  Google Scholar 

  38. Arashiba K, Miyake Y and Nishibayashi Y 2011 A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia Nat. Chem. 3 120

    CAS  Google Scholar 

  39. Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K and Nishibayashi Y 2014 Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia Nat. Commun. 5 140

    Google Scholar 

  40. Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K and Nishibayashi Y 2014 Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing PNP-pincer ligands: Remarkable effect of substituent at PNP-pincer ligand J. Am. Chem. Soc. 136 9719

    Article  CAS  PubMed  Google Scholar 

  41. Hölscher M, Prechtl M H G and Leitner W 2007 Can \([\text{ M(H) }_{2}(\text{ H }_{2})\)(PXP)] pincer complexes (M = Fe, Ru, Os; X = N, O, S) serve as catalyst lead structures for \(\text{ NH }_{3}\) synthesis from \(\text{ N }_{2 }\)and \(\text{ H }_{2}\)? Chem. A Eur. J. 13 6636

    Article  CAS  Google Scholar 

  42. Hölscher M and Leitner W 2012 Heterolytic outer-sphere cleavage of \(\text{ H }_{2}\) for the reduction of \(\text{ N }_{2}\) in the coordination sphere of transition metals—A DFT study Angew. Chem. Int. Ed. 51 8225

    Article  CAS  Google Scholar 

  43. Hölscher M and Leitner W 2006 DFT investigation of the potential of HM\((\text{ NHCH }_{2}\text{ CH }_{2})_{3}\)X catalysts (M = Mo, Ru, Os; X = N, P) for the reduction of \(\text{ N }_{2}\) to \(\text{ NH }_{3}\) by \(\text{ H }_{2}\) Eur. J. Inorg. Chem. 2006 4407

    Google Scholar 

  44. Truhlar D G 2009 Valence bond theory for chemical dynamics J. Comput. Chem. 28 73

    Article  CAS  Google Scholar 

  45. Guha A K and Phukan A K 2011 Why vanadium complexes perform poorly in comparison to related molybdenum complexes in the catalytic reduction of dinitrogen to ammonia (schrock cycle): A theoretical study Inorg. Chem. 50 8826

    CAS  Google Scholar 

  46. Cao Z X, Zhou Z H, Wan H L and Zhang Q N 2005 Enzymatic and catalytic reduction of dinitrogen to ammonia: Density functional theory characterization of alternative molybdenum active sites Int. J. Quantum Chem. 103 344

    Article  CAS  Google Scholar 

  47. Schenk S and Reiher M 2009 Ligands for dinitrogen fixation at schrock-type catalysts Inorg. Chem. 48 1638

    CAS  Google Scholar 

  48. Magistrato A, Robertazzi A and Carloni P 2007 Nitrogen fixation by a molybdenum catalyst mimicking the function of the nitrogenase enzyme: A critical evaluation of DFT and solvent effects J. Chem. Theory Comput. 3 1708

    Article  CAS  PubMed  Google Scholar 

  49. Khoroshun D V, Musaev D G and Morokuma K 2002 Sigma trans promotion effect in transition metal complexes: A manifestation of the composite nature of binding energy Mol. Phys. 100 523

    CAS  Google Scholar 

  50. Schenk S, Kirchner B and Reiher M 2009 A stable six-coordinate intermediate in ammonia-dinitrogen exchange at Schrock’s molybdenum catalyst Chem. A Eur. J. 15 5073

    Article  CAS  Google Scholar 

  51. Schenk S, Guennic B-L, Kirchner B and Reiher M 2008 First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full \(\text{ HIPTN }_{3}\)N ligand Inorg. Chem. 47 3634

    CAS  Google Scholar 

  52. Studt F and Tuczek F 2005 Energetics and mechanism of a room-temperature catalytic process for ammonia synthesis (Schrock cycle): Comparison with biological nitrogen fixation Angew. Chem. Int. Ed. 44 5639

    Article  CAS  Google Scholar 

  53. Hetterscheid D G H, Hanna B S and Schrock R R 2009 Molybdenum triamidoamine systems. Reactions involving dihydrogen relevant to catalytic reduction of dinitrogen Inorg. Chem. 48 8569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Balu P, Baskaran S, Kannappan V and Sivasankar C 2012 A possibility of functionalizing the dinitrogen in a Chatt complex by \(\text{ H }_{2}\): Density functional studies Polyhedron 31 676

    Article  CAS  Google Scholar 

  55. Balu P, Baskaran S, Kannappan V and Sivasankar C 2012 Hydrogenation of dinitrogen to ammonia in [WF(\(\text{ PH }_{2}\)(\(\text{ CH }_{2})_{2}\text{ PH }_{2})_{2}\text{ N }_{2}\)] using \(\text{ H }_{2}\): Insights from DFT calculations New J. Chem. 36 562

    CAS  Google Scholar 

  56. Baskaran S and Sivasankar C 2013 Reduction of \(\text{ N }_{2}\) by \(\text{ H }_{2}\) to \(\text{ NH }_{3}\) and \(\text{ N }_{2}\text{ H }_{4}\) using [MoL] (L = triamidoamine) and organic co-catalysts: A theoretical approach J. Mol. Catal. A Chem. 370 140

    Article  CAS  Google Scholar 

  57. Baskaran S and Sivasankar C 2014 Ammonia and hydrazine synthesis from [\(\text{ N }_{2}\)-W(\(\text{ NHCH }_{2}\text{ CH }_{2})_{3}\)N] and \([\text{ AH }]^{+}[\text{ BH }]^{-}\) using Sivasankar catalytic cycle: DFT studies Comput. Theor. Chem. 1027 73

    Article  CAS  Google Scholar 

  58. Tamizmani M and Sivasankar C 2017 Protonation of coordinated dinitrogen using protons generated from molecular hydrogen Eur. J. Inorg. Chem. 2017 4239

  59. Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648

  60. Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  61. Becke A D 1985 A new mixing of Hartree–Fock and local density-functional theories J. Chem. Phys. 98 1372

    Article  Google Scholar 

  62. Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82 270

    Article  CAS  Google Scholar 

  63. Wadt W R and Hay P J 1985 Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi J. Chem. Phys. 82 284

    Article  CAS  Google Scholar 

  64. Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals J. Chem. Phys. 82 299

    Article  CAS  Google Scholar 

  65. Dunning T-H and Hay P J 1977 In Methods of Electronic Structure Theory H F Schaefer III (Ed.) Vol. 3 (Boston: Springer)

  66. Gordon M S 1980 The isomers of silacyclopropane Chem. Phys. Lett. 76 163

    Article  CAS  Google Scholar 

  67. Hariharan P C and Pople J A 1973 The influence of polarization functions on molecular orbital hydrogenation energies Theor. Chim. Acta 28 213

    Article  CAS  Google Scholar 

  68. Hariharan P C and Pople J A 1974 Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory Mol. Phys. 27 209

    CAS  Google Scholar 

  69. Ditchfield R, Hehre W J and Pople J A 1971 Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules J. Chem. Phys. 54 724

    Article  CAS  Google Scholar 

  70. Hehre W J, Ditchfield R and Pople J A 1972 Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules J. Chem. Phys. 56 2257

    Article  CAS  Google Scholar 

  71. Mennucci B and Tomasi J 1997 Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries J. Chem. Phys. 106 5151

    Article  CAS  Google Scholar 

  72. Cancès E, Mennucci B and Tomasi J 1997 A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics J. Chem. Phys. 107 3032

  73. Cossi M, Barone V, Mennucci B and Tomasi J 1998 Ab initio study of ionic solutions by a polarizable continuum dielectric model Chem. Phys. Lett. 286 253

    CAS  Google Scholar 

  74. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Laham A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A Gaussian 03, Revision C.01. Gaussian, Inc.: Wallingford CT, 2003

Download references

Acknowledgements

C. S. thanks the Science and Engineering Research Board (EMR/2014/000623), New Delhi, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnappan Sivasankar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christopher Jeyakumar, T., Baskaran, S. & Sivasankar, C. Possibility of reducing the coordinated dinitrogen into ammonia and hydrazine using [Ru-L] (L = triamidoamine) and FLP-H\(_{2}\): A DFT study. J Chem Sci 130, 57 (2018). https://doi.org/10.1007/s12039-018-1460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1460-1

Keywords

Navigation